Certain Conformal-like Infinitesimal Symmetries and the Curvature of a Compact Riemannian Manifold
نویسندگان
چکیده
منابع مشابه
Conformal Curvature Flows on Compact Manifold of Negative Yamabe Constant
Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...
متن کاملConformal vector fields and conformal transformations on a Riemannian manifold
In this paper first it is proved that if ξ is a nontrivial closed conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1 being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci curvature in direction of a certain vector field is non-negative, then M is isometric to the n-sphere S(c), where S =...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2011
ISSN: 1370-1444
DOI: 10.36045/bbms/1307452072